
Motion Activated Arduino Car (MAAC)

Engineering Science 50 Final Project

Saagar Deshpande '14 and Randy Miller '13

May 1, 2012

Abstract

Our project combined multiple technologies in order to create a motion controlled car.

The idea behind the project was to interface with a Microsoft Xbox 360 Kinect to control an

Arduino Nano board, which in turn powered the motors of a BOE-bot vehicle. In our �nal

project, we were able to connect these various systems together, pass information between the

Kinect and the Arduino via the serial data connections, and move the car with various hand

motions. We modularized our systems so that we would be able to interchange speci�c systems

as necessary. This allows anyone to update the implementation and use di�erent vehicles so

long as the Arduino and serial connections are maintained. While our project successfully

combined these systems together to create a working Motion Activated Arduino Car, we feel

that there is a solid room for improvement and addition to both the hardware and software

systems implemented. On the hardware side, we would like to have used more precise motors

rather than the BOE-bot servo motors, add sensors for environment detection, and a wireless

camera for the driver to see the vehicle's movements while using the Kinect MAAC application

from a distant location. On the software, given that the hardware additions can be made, we

would like to be able to implement an arti�cial intelligence to control the vehicle and create a

tuning mode to optimize the vehicle being used as the MAAC.

1 Introduction

The Motion Activated Arduino Car (MAAC) is an Arduino powered BOE-bot car that is controlled
by motion sensing via the Microsoft Kinect. The goal of our project was to be able to successfully
use voice and motion commands to power and control the servos motors on the BOE-bot, which in
turn would determine the speed and direction of the car's motion. The basic operating principle is
to be able to use the Kinect to control the car virtually, with the e�ect that the car would respond
as if it were a normal remote-controlled car.

Our project has three major components: the BOE-bot car, the receiver, and the transmitter.
First, the car consists of a circuit that wires the Arduino Uno to the motors on the BOE-bot car.
Next, the receiver involves Arduino code which captures data sent via serial input and translates
this information into commands for the motors on the MAAC. Finally, the transmitter is a Kinect
C# application developed in Visual Studio which translates hand positions of a user into byte
packets which are sent over a serial connection to the Arduino to process into motion. This serial

1



connection can also be emulated by a wireless X-Bee connection, in e�ect enabling wireless com-
munication between the application and the MAAC.

The hardware side of the project is relatively simple, requiring simple circuitry to repurpose
the BOE-bot for use with the Arduino Uno. Additional circuitry was required to interface with
X-Bee controllers for wireless communication. The software side was more complex, requiring code
platforms for both the Kinect and the Arduino. In the end, we were able to create this multi-system
project which synchronizes correct and allows the user to virtually drive a robot car.

2 Speci�cations/Objectives

• MAAC can move in its full capacity.

• MAAC is fully controlled by the Arduino Uno.

• MAAC is human controlled by the Kinect using a custom C# application.

• Kinect application successfully interfaces with the Arduino via serial data connection.

• Kinect application successfully communicates to the Arduino Uno via wireless X-Bee serial
data transmission.

3 Project Description

First, a demo of our �nal project can be found at http://youtu.be/4v98L51F9Vw.

As mentioned in the introduction, the Kinect MAAC application consists of three components:
the car, the receiver, and the transmitter.

To make the car, we modi�ed a BOE-bot car to be controlled by an Arduino Uno. To do this,
we connected the servo motors on the car to two output pins (we chose 9 and 10) on the Arduino
control board, using a bread board to pass signals and power between the board and the motors, as
well as to provide us with some wire management. We used batteries to provide us with a consistent
5 volt power source, which powers the entire car, including the Arduino. The receiver consists of
the Arduino Uno reading input from a serial connection, which is then pushed out through the
output pins to the servos. We developed a small Arduino program which would allow byte packets
received by the Arduino to be forwarded to the servos as motor commands such that the MAAC
would move in the correct direction with the correct speed.

For the transmitter, we developed a C# application in Visual Studio to interface with the Kinect
device, allowing us to capture motion and voice commands and translate them into actions within
the application and to serial data to be sent to the MAAC. Serial data could be sent from the
application via a direct USB connection to the Arduino Uno in the receiver or via a wireless X-Bee
connection which itself constitutes a serial connection. Given the hardware that we have, we also
use an Arduino Nano for forwarding application data to a X-Bee; note that this could be replaced
with a X-Bee USB Explorer.

2

http://youtu.be/4v98L51F9Vw


The Kinect MAAC application has four screens, or �modes�: Menu, Steering, Precision, and Pod
Racing. The latter three of those modes are used to drive the MAAC. Upon start up, the Kinect
MAAC application begins motion sensing and voice recognition. The user can navigate to any of
the three driving modes from the main menu by allowing his/her right hand to hover over one of
the three menu buttons for a few seconds. Additionally, when the MAAC is not being driven, voice
commands can be used to switch to any mode. The voice commands and their functions are as
follows:

• Kinect menu: switch to the main menu

• Kinect steering: switch to Steering Mode

• Kinect precision: switch to Precision Mode

• Kinect pod racing: switch to Pod Racing Mode

When the MAAC is not in motion, a voice command can be used at any time to navigate between
any of the modes. Each of the three driving modes has its own control interface with mode-speci�c
driving user-controls, read-outs of the X and Y Cartesian coordinates of the user's left and right
hands, a color stream of the user overlaid with a skeleton viewer, and a stop button.

The �rst of these driving modes is Steering Mode, which allows the user to simulate driving the
car with a virtual steering wheel. Steering mode consists of a wheel which the user must virtually
grab and turn. This mode allows the user to move the MAAC as they would drive a car. The wheel
motions correspond to the power of each motor. Straight-line speed cannot be changed in this
mode, and is set by default to maximum speed. This mode can be somewhat di�cult to control
since the servos are not very sensitive to slight changes, and it is meant to showcase the speed
at which data is transferred and processed. This mode would more mirror a true virtual driving
experience if the servos were more sensitive to all values.

The second mode is Precision Mode, which allows the user to control the car with �ne-tune driv-
ing controls. This mode is meant to show o� the precision of the Kinect and multi-system MAAC.
Precision mode consists of one vertical slider bar and one horizontal slider bar. The left hand locks
onto the slider on the vertical bar and controls whether the car is moving forward or backward as
well as how fast the car is moving. The right hand locks onto the slider on the horizontal bar and
controls whether the car is turning left or right or is moving straight ahead.

The third mode is Pod Racing Mode, which allows the user to control the car with a more
intuitive sense of driving. This mode is meant to be a one-to-one mapping of user input to servos
commands, as there is relatively little processing utilized to compute the servos commands. Pod
Racing Mode consists of two slider bars, one for the left hand and one for the right hand. Each
hand corresponds to the respective motor. At the start, both sliders are in the middle of their
respective bars, which means that there is no power going to either motor. If a slider is moved
upwards, the corresponding motor will move forward at the speed relative to how far the slider was
moved upwards. If a slider is moved downwards, the motor will move backwards relative to how
the slider was moved downwards. The two slider bar control system allows each hand to control
the exact speed and direction of each motor at all times, allowing the user to get a feel for the car
and the servo motors. This allows the user to execute smooth turns very easily. Readers should

3



note that Pod Racing mode was inspired by the sport of the same name in the �rst episode of the
epic movie, �Star Wars�.

4 Project Design

As our project involved interactions between multiple types of systems, design decisions were crucial
to making sure that each piece worked independently correctly and that all the pieces interfaced
correctly as well. As a result, we modularized as many components of our project as possible. This
also enables us to switch out di�erent parts in the future rather easily.

4.1 High Level Design

To implement our project, we used a modi�ed BOE-bot, an Arduino Uno, an Arduino Nano, and
X-Bee controllers. We chose to use the Arduino Uno and Nano because they allowed us to easily
control outputs via the pins on the boards. This essentially means that we can send signals in
the form over the pins on the Arduino Uno to control anything connected to those pins. As such,
we can exchange the BOE-bot with any other type of vehicle, so long as it can be connected to
the output pins on the Arduino Uno. We chose to use the Arduino Nano simply to interface with
the X-Bee module. With more appropriate X-Bee/Arduino shields (eg, X-Bee USB Explorer), we
would be able to forgo the Arduino Nano for a slightly simpler setup.

We used the X-Bee wireless controllers to allow the MAAC to move freely when controlled by
the Kinect MAAC application . This is another choice that allowed us to maintain modularity.
Because the X-Bee controllers work over serial data connections, there is no di�erence between
using the X-Bee and the physical USB connection to the Arduino Uno from a coding standpoint.
Once the Arduino Uno is loaded with the correct program, we can use either the X-Bee or the USB
wired connection, and the serial communication will still take place.

The pipeline of information transfer is as follows:

1. Kinect processes input from the user (motion and/or voice commands) and translates these
into byte packets.

(a) Kinect MAAC application registers input and determines action to translate

i. Voice commands translate to mode transitions

ii. Motion commands translate to mode transitions, driving activation, or position
translations.

(b) Kinect MAAC application executes action or creates byte packets from the positional
data.

(c) Kinect MAAC application sends byte packets to Arduino MAAC application over serial
USB connection

2. The Arduino Nano receives the byte packets over the serial USB connection and forwards
them to a X-Bee controller.

4



3. The X-Bee controller transmits the byte packets wirelessly to another X-Bee controller.

4. The receiving X-Bee controller forwards the byte packets to the Arduino MAAC application
over a serial connection.

5. The Arduino MAAC application receives and parses the byte packet.

(a) Arduino MAAC application receives byte packet in C via open serial USB connection.

(b) Arduino MAAC application parses positional data from byte packet into commands for
the motors on the BOE-bot

6. The Arduino MAAC application sends the commands to the BOE-bot motors, sending the
car in the correct speed and direction.

4.2 Code Design

Control �ow is as follows:

1. MainWindow constructor is called at start up.

(a) Initializes GUI.

(b) Initializes di�erent mode components.

2. The main window loads, so the Window_Loaded event handler is called.

(a) A Kinect sensor �chooser� is assigned an event handler, enabling the application to
initialize Kinect sensors.

(b) The serial port is opened, and a stop signal is sent over the serial port.

3. A Kinect is detected, so the kinectSensorChooser1_KinectSensorChanged event handler is
called.

(a) The Kinect is initialized for video and skeleton streaming.

(b) Voice recognition is initialized.

4. A Kinect �frame� event is �red 30 times a second, so the sensor_AllFramesReady event
handler is called that often.

(a) The application grabs the skeleton of the user.

(b) The GUI's hands/cursors are updated to match the skeleton of the user.

(c) A �behavior� or �compute� function is called; which behavior function is called is depen-
dent on which mode the application is currently in.

(d) After the behavior function has �nished executing, coordinate read-out boxes are updated
with the coordinates of the user's hands.

5. The menu behavior function is called when the application is in Menu mode.

5



(a) The menu checks to see if the user's right hand/cursor is hovering over one of the menu
buttons, and calls a �button clicked� event if the cursor has been hovering over that same
button for an extended amount of time.

6. The steering behavior function is only called when the application is in Steering mode.

(a) The internal representations of the hands are updated.

(b) When the user has put his/her hands on the wheel, then the Arduino begins to move
according to the motions of the user.

(c) When one of the user's hands touches the stop button, the Arduino stops future move-
ment until the hands are on the wheel again.

(d) If the user is driving the Arduino, the wheel turns with the movements of the user's
hands.

(e) If the user is driving the Arduino, the wheel rotation is transformed to servos-friendly
bytes which are then sent to the Arduino.

7. The precision behavior function is only called when the application is in Precision mode.

(a) The internal representations of the hands are updated.

(b) When the user has put his/her hands on the sliders, then the Arduino begins to move
according to the motions of the user.

(c) When one of the user's hands touches the stop button, the Arduino stops future move-
ment until the hands are on the wheel again.

(d) If the user is driving the Arduino, the sliders adjust according to the movements of the
user's hands.

(e) If the user is driving the Arduino, the slider values are transformed to servos-friendly
bytes which are then sent to the Arduino.

8. The pod racing behavior function is only called when the application is in Pod Racing mode
which, on a high level, is completely identical to the behavior function of Precision mode.

5 Parts List

5.1 Hardware

• Microsoft Kinect

• Car

� Servos motors (2)

� BOE-bot chassis and tires

� Custom mount

� Power source

6



• Communication

� X-Bee Series 1 Wireless Transmitter (2)

� X-Bee Arduino Shield

� X-Bee Explorer Regulated

• Receiver

� Arduino Uno

� Breadboard

� Circuitry Material (wires, pins, etc.)

• Transmitter

� Arduino Nano

� Micro-USB cable

� Circuitry material(wires, pins, etc.)

• Arduino Kit

� Arduino Nano Processing Board

� Bread board

� Circuitry Material (wires, pins, etc.)

5.2 Software

• Microsoft Kinect SDK [4]

• Visual Studio 2010

• Arduino Uno and Nano drivers

• Arduino Integrated Development Environment

• X-CTU (for X-Bee support) [5]

• Sandcastle for documentation [8]

6 Project Implementation

Our implementation consisted of 10 stages:

1. Demo stage: a system that was able to demonstrate primitive functionality, forwarding Kinect
input data to the Arduino and then to the servos

2. Menu and Steering stage: a system that consisted of a basic menu and a mode that let the
user �steer� a virtual wheel to control the BOE-bot

7



3. Precision stage: add an additional mode to the menu that let the user steer the BOE-bot
using a horizontal and a vertical slider.

4. Refactoring Part I stage: split the di�erent modes into di�erent �les

5. Pod Racing stage: add an additional mode to the menu that let the user steer the BOE-bot
using 2 vertical sliders, like a Star Wars pod racer

6. Voice commands stage: add voice recognition to the application

7. Animations and Video stage: add fade in/out animations to transitions between modes

8. Refactoring Part II stage: factor out common functionality to separate functions in a new �le

9. X-Bee stage: replace the USB connection with a wireless X-Bee connection

10. Polishing and Documentation stage: �x subtle bugs, further refactor code, and thoroughly
comment and document code

6.1 Demo Stage

We initially set out to make a system that essentially consisted of the BOE-bot responding to any
Kinect input via the Arduino and a USB serial connection. This entailed wiring up the Arduino
to the BOE-bot, writing a short program for the Arduino to execute, and creating a basic C#
application that forwarded Kinect input data to the Arduino. Once we �gured out what the
di�erent pins on the servo motors signi�ed, we were easily able to determine how to construct the
circuit between the Arduino and the motors. We followed an online tutorial to create the Kinect
application and the Arduino program[1]. We also followed the Kinect Quickstart series in order to
learn more about how to use the Kinect SDK[2]. Essentially, the Kinect application did a few basic
but important and useful things:

• It referenced and used KinectWPFViewers, a library that makes it easy to grab data out of
the Kinect, such as skeleton data and video streams.

• It tracked the user's skeleton.

• It displayed the user's hands and head as circles and an image, respectively.

• It displayed the user's Cartesian coordinates on the window.

• It opened and successfully used serial ports for information transfer.

• It sent the user's left hand and right hand Y coordinates modulo 180 (the maximum value of
the servo motors) over the serial port to the Arduino.

The Arduino program then simply wrote the given Y coordinates modulo 180 to the servos. Without
even determining how the hands would a�ect the motors, we tested our application and were
surprised to see that our system worked. We noted how the hand movement mapped to the servos,
and were able to �gure out what the correct input should be to the servos in order to appropriately
control them (see the Piazza Posts section of the Appendix for information on how we did this).
Ultimately, this stage was extremely important because it introduced us to the relevant parts of
the Kinect SDK and serial port communication.

8



Figure 1: Demo

6.2 Menu and Steering Stage

We started a completely new C# application called ArduinoController; our focus for this stage was
to create a nicer and more interactive graphical user interface (GUI) for the Kinect application. To
this end, we followed an online tutorial on how to create �hover buttons� within the GUI as well
as a cursor for a user's hand[3]. We used the same style of functions to implement the �rst menu,
which consisted of two buttons for Steering mode and Precision mode.

Figure 2: Menu

After implementing clicking, we then moved on to implementing Steering mode. Steering mode

9



is actually implemented in the same class as the menu and as the main application, which in the long
run was probably not a good design choice. However, at the time, implementing Steering mode in
the main application class facilitated its development; in order to switch modes all we had to do was
hide the menu components and make visible the Steering mode components. We were not familiar
enough with the .NET platform to be able to separate the modes into di�erent classes, so when
we tried, we failed; thus, implementing the four modes in one class was not really that big of an issue.

Once we were able to successfully switch to Steering mode from the menu (ie, selecting the
Steering button from the menu and hiding the menu buttons and title), we set o� to implementing
the functionality for Steering mode. We �rst added visual read-outs for the coordinates of the left
and right hands, to aid in debugging. We added a wheel image for steering the car as well as a stop
button that when touched, not clicked, would immediately send a stop signal to the car and would
no longer send user input to the car. After much thought and many trials, we decided to �bind� the
user's right hand to the wheel, such that once the user has selected the wheel with both hands, the
wheel turns only when the right hand moves; moving the left hand has no e�ect on the wheel. Then,
we implemented a function that calculated the rotation between the wheel's current position and
the wheel's stationary position, which in turn rotated the wheel image on the GUI (which actually
took us a while to �gure out how to do). Lastly, we implemented a function that transformed that
rotation angle into servos-friendly bytes that were sent to the Arduino immediately. It was at this
point that we realized that the Arduino code cannot have any delays, since the Kinect sends at least
30 byte packets per second; having a delay larger than 3 milliseconds resulted in an unsynchronized
system.

Ultimately, Stage 2 was important because we learned how to create GUI components and how
to manipulate them, as well as created our �rst mode. Creating future modes then became less
non-trivial.

Figure 3: Steering Mode

10



6.3 Precision Stage

Creating the Precision Mode was much easier once we had implemented Steering Mode. The code
for transitioning from the menu to Precision mode was very similar to the transitioning code from
the menu to Steering mode, and more importantly, there were no (overly) complex transformations
in this stage. Once the GUI for Precision mode was set up, there were only two non-trivial parts
left to implement: �binding� the hands/cursors to the sliders and transforming the slider values to
servos-friendly byte packets to be sent to the Arduino.

For the binding problem, we created two invisible buttons and placed each behind one of the
center of the slider bars. Thus, in order to determine if a user's hand is over the center of the slider
bar or is at least near the center, we can simply ask if the user's hand is hovering over the respective
invisible button.

Figure 4: Precision Mode: Binding

The transformation problem required thought because it required a means to transform speed
and horizontal direction data into commands for the left and right servo motors. First, the speed
and horizontal direction data were computed by �nding the position of the cursor relative to the
center of one of the sliders. For example, if the right hand cursor was at the 3

4 mark of the hori-
zontal slider (where the 0th mark is the very left of the slider), then the BOE-bot should turn a
�half-right�, or a soft right. If the cursor was at the right hand side of the horizontal slider, then the
BOE-bot should turn a �full-right�, or a hard right. We used the same intuition for speed: the user's
relative hand position determined not only if the car was moving forwards or backwards but also
how fast it was moving in that direction. With this algorithm, the BOE-bot should theoretically
be able to move at varying speeds. In practice, the BOE-bot only has 2 or 3 speeds (fast, slow and
stop), so this �ne-grained control experience cannot be seen with our current hardware.

The speed and horizontal direction variables were then transformed to commands for the servos.
In other words, to go forward, both engines should receive full �power�; to turn right, the right

11



engine should get less �power� than the left engine, and vice versa for the BOE-bot to turn left.
This intuition was captured in a short function, which would then send the resulting byte packets
to the Arduino.

6.4 Refactoring Part I Stage

At this point, the code had become one gigantic �le with no particular organization. We took some
time to separate out functionality into di�erent �les and to reorganize control �ow. Excess code
from tutorials was cut from the application. At the end of this stage, the main application and the
menu occupied one �le, Steering mode occupied another �le, and Precision mode also had its own
�le. Steering mode and Precision mode did not look similar at this time, even though they have
extremely similar high level behavior. This was addressed later.

6.5 Pod Racing Stage

We were thinking about �nishing o� the project before we thought of adding a Pod Racing mode.
Pod racing is a sport in the �ctional world of Star Wars. It involves living beings racing against
each other by driving �pods,� which consist of a chassis for the person to rest in, which is then
attached by steel wires to one or more engines which propel the vehicle forward. The engines and
the pod stay above ground using anti-gravity technology not yet fully realized in the real world.
The traditional pod racing vehicle consists of a pod and two engines.

Figure 5: Traditional 2-engine Pod Racing Vehicle

The pod racing vehicle's dual engines are controlled by two levers, one for each engine. Moving
a lever forward causes that respective engine to move forward at a faster speed, and moving one
back causes the respective engine to slow down or even go backwards at some point.

A natural way to emulate these controls in a WPF application is to use vertical sliders: moving
a slider up is equivalent to moving a pod racing lever forward, etc. Because the servos are controlled
by exactly this control schema, there were no transformation functions needed to translate input
data into servos-friendly byte packets. In fact, input data only needs to be scaled appropriately
before it is sent to the Arduino.

12



Figure 6: Pod Racing Mode

6.6 Voice Commands Stage

We did not have a natural way for users to switch modes, since we didn't want to litter the driving
screens with buttons. Instead, we implemented voice recognition for mode navigation.

To do this, we followed the Voice Recognition sample very closely, which came with the Kinect
SDK[4]. We copied only the necessary functions from the sample into a new class, modi�ed them as
necessary, and added a few more methods such that the main application could initialize and start
the voice recognition engine. Later in the polishing stage, we added two more functions that pause
the voice recognition engine while the user drives the Arduino and restarts the voice recognition
engine when the user is not driving the Arduino. Thus, voice commands only work when the user
is not driving the Arduino. This was done in order to improve motion tracking performance.

6.7 Animations and Video Stage

The transitions between modes at this point consisted of hiding some components and revealing
others instantaneously, which from a user's perspective was rather startling. To combat this, we
added fade animations. Essentially, when a the application is about to switch modes, the current
mode's on screen components are disabled and fade out from the GUI, and the next mode's on
screen components are enabled and fade into the GUI smoothly. We �rst did simple animations on
one or two components for the transition from the menu to Steering mode, and then scaled that
same process to all components in all modes by implementing clean helper functions.

We also added video rather easily by following the Skeletal Tracking Fundamentals tutorial as
part of the Kinect for Windows Quickstart Series[6]. Adding video and a skeleton frame turned
out to be as easy as adding �viewers� from the included KinectWPFViewers library onto the main
window, and binding the viewers to the Kinect sensor; everything else was taken care of!

13



Figure 7: Fade In Animation

6.8 Refactoring Part II Stage

At this point, code was organized by mode, but not across modes. To address this issue, we created
a new �le called �Common.cs� to hold all helper functions and instance variables common to two
or more modes. This greatly cut down on the size of the code, and also made clear how similar the
modes are.

Similarly, the animation code was organized into clear sections: each mode now has a �Turn
on/o�� section/region, which consists of a uniform turn o� function and and a corresponding turn
on function, which fade in and out components for that particular mode.

Within each �le, all the functions were organized into di�erent sections, which can be expanded
and collapsed with ease for quick navigation. We also took time to add inline clarifying comments
to uncommented bits of the source code.

6.9 X-Bee Stage

Quite frankly, this was perhaps the most painful part of the project. We initially were able to
successfully use X-Bee communication for our Demo application using the set-up speci�ed by the
X-Bee Piazza post (see the Appendix), after trying dozens of times to con�gure the X-Bees ap-
propriately and spending a few hours to get the con�gurations to work. Once we realized that
the X-Bees worked out of the box, we were able to use X-Bee communication with the hardware
described in the X-Bee Piazza post.

However, we weren't able to borrow those hardware parts again, which resulted in lots of hours
spent trying to ine�ciently test a wired BOE-bot. Thanks to Professor Loncar and Kathleen

14



France, we were able to obtain 2 X-Bee Explorers Regulated as well as scavenge for two X-Bee
S1s. Professor Loncar also provided us with an additional Arduino Nano which would act as the
go-between USB connection between the PC and the X-Bee. After trying unsuccessfully to connect
the system together, we soldered one of the X-Bee Explorers Regulated to 4 pins to attach to a
breadboard, and by luck found an extra X-Bee Arduino shield (to interface between the Arduino and
the X-Bee) lying around in the lab. The shield was an especially lucky �nd because we were having
trouble having the X-Bee communicate with the Arduino Uno via the X-Bee Explorer Regulated.

Once we had these materials, we constructed a quick circuit between the Arduino Nano and the
soldered X-Bee Explorer in order to forge a serial connection between the PC and the X-Bee. From
here, we were able to construct our full circuit as show in Figure 7.

Figure 8: Full System Block Circuit

6.10 Polishing and Documentation Stage

At this point, we felt that we had completed enough features to constitute a full-�edged project.
We renamed variables and methods appropriately, reorganized code, added inline comments to the
code, eliminated minor bugs, polished animations, resized graphics, modi�ed when the voice recog-
nition engine turns on and o�, and much more.

Additionally, we wrote inline XML documentation for every method and �eld/instance variable,
regardless of its access permissions (public, private, etc). We were able to use a program called
Sandcastle [8] to convert the XML documentation �le into a collection of web pages organized by
class and by class members (methods and �elds). The resulting html web page �les are a good
way to get an idea of the data structures and functions used to implement our application without

15



diving into the code itself, and should provide adequate accompanying documentation for those
who choose to dive into the source code of our application.

7 Outlook and Possible Improvements

Our project was a success on both the hardware and software ends. It was relatively easy to modify
the BOE-bot to work with the Arduino Uno, as it required us to connect the servo motors to two
output pins, the power pin, and the ground pin. The Arduino default Servo.h library enabled us
to write data read by a serial connection directly to the servos via the output pins. Using this, we
were able to implement the Arduino MAAC application without hassle to work with the Arduino
Uno.

We spent a majority of our time working on the Kinect MAAC application to make the user
interface intuitive and on de�ning the transformation functions for transferring data between the
Kinect and the Arduino correctly. Multiple libraries in Visual Studio allowed us to implement all
the functionalities; however we did spend substantial time trying to implement the transformation
functions correctly, which would send the appropriate byte packets over the serial data connection.

Finally, we had initial di�culties getting the X-Bee wireless controllers to work. Using the rec-
ommended program, X-CTU, did not actually help us to get the X-Bee receivers connected, and
we recommend that future projects avoid this program unless the team knows how to fully use it
or requires it to further con�gure the X-Bees. Documentation for the X-Bees is not well organized,
and it is di�cult to debug problems with the given resources. We �nally realized that the default
settings of the X-Bee controllers worked, and we were able to use the Arduino shields as plug and
play devices to get the wireless serial data transfer working correctly. Some clear documentation
on the X-Bees would go a long way in saving time for future projects.

Given additional time and resources, we believe that this project could be improved and ex-
tended in multiple ways. Both the hardware and software can be improved to add additional
functionality to the program. We believe that this will allow the MAAC to have practical purposes,
since it could be used with larger electronic vehicles, such as actual cars, in the real world. While
we do not currently have the resources to implement this, we believe that it is of practical value to
use.

7.1 Hardware Modi�cations

Motors - Due to the modularized structure of our project, we believe that we can update and improve
the car without other systems needing to be updated. First, we would use regular motors rather
than the current servo motors. The servo motors only have 2 non-zero speeds in each direction,
corresponding to slow and fast. By using more precise motors, we would be able to �ne tune the
MAAC's turning capabilities and give the user a better distinction for the various speeds on the car.

Remote Camera - We would add a wireless camera onto the MAAC, which would potentially
allow the user to see where the MAAC is going without physically watching the car moving. This
allows the user to fully focus on controlling the MAAC with the Kinect MAAC application and

16



watch the MAAC from the next room over. We would potentially need to use bluetooth or another
form of wireless connection to transmit the camera's data to the computer for processing.

Sensors - Adding sensors to the MAAC would allow us to create a standardized "car safety" for
the driver. We would want the MAAC to be able to detect things around it, to prevent accidental
collisions and avoid damaging the hardware on the MAAC. Furthermore, we would also be able
to provide the driver with more information about the environment around the MAAC, assuming
that the driver can not physically see the MAAC while he is controlling it.

7.2 Software Modi�cations

Robustness - The Kinect MAAC application is not completely bug-free, as sometimes it will crash
when the Kinect is disconnected from the PC, for instance. The application should fail more grace-
fully and should be able to handle more extreme use scenarios.

Design - The design of the Kinect MAAC application is not optimal. As mentioned in Section
6, the four modes are in one class; in an optimal program, the four modes should also be separate
classes that inherit from an abstract base class for modes, rather than just splitting the modes up
into separate �les.

AI Mode - We believe that we would be able to create an AI mode where the MAAC would
travel to a location speci�ed by a voice or motion command on the Kinect Application. With the
hardware changes listed above, the AI would be able to determine the best path to the target. A
GPS-style sensor might be necessary to determine the relative location of the MAAC while en route
to the destination.

Tuning/Optimization - In order to aid the driver, we would like to tune the car and the cal-
culations behind the software to make the driving experience as smooth as possible. Adding more
realistic math behind the di�erent driving modes would give a more life-like experience to the
driver. Furthermore, we would like to be able to add tuning/optimization modes in the software
itself, which would allow the driver to customize o�sets for sensors and motors, to allow for the
best driving conditions possible.

8 Acknowledgments

We would like to extend our thanks to to Abishai Vase '12 and Professor Marko Loncar for their
help in the lab and to Ellen Farber '13 for creating a customized mount for the MAAC.

9 Disclaimer

We allow this project to be shared in its full capacity, including code, photos, and videos. Should
the results be replicated and enhanced, please cite this project and contact its authors.

17



References

[1] http://www.instructables.com/id/Kinect-controls-Arduino-wired-Servos-using-Visual-/

[2] http://channel9.msdn.com/Series/KinectQuickstart

[3] http://www.diaryofaninja.com/blog/2011/10/19/remaking-the-xbox-kinect-hub�an-
introduction-to-new-user-interfaces

[4] http://www.microsoft.com/en-us/kinectforwindows/

[5] http://www.digi.com/support/productdetail?pid=3352

[6] http://channel9.msdn.com/Series/KinectQuickstart/Camera-Fundamentals

[7] http://channel9.msdn.com/Series/KinectQuickstart/Skeletal-Tracking-Fundamentals

[8] http://sandcastle.codeplex.com/

10 Appendix

10.1 Piazza Posts

10.1.1 Xbee and Arduino - written by Randy Miller

For people who are looking to use Xbee for point-to-point communication, the Xbee S1s in the back
can do that.

To set up wireless PC/computer to Arduino communication, you can use the S1s. You will need 7
things: your PC, an Arduino, 2 Xbee S1s, Xbee Explorer (http://www.skpang.co.uk/catalog/images/wireless/08687-
03-L.jpg), a micro USB cable, and an Arduino shield (http://freeduino.ru/arduino/images/XBee_Shield_Arduino_1_big.jpg).
The setup will look like PC -> micro USB -> Xbee Explorer -> Xbee S1 ��� wireless connection
��� Xbee S1 -> Xbee Shield -> Arduino (which is connected to a power source).

The Xbees are precon�gured out of the box, so there's no need to mess with them too much
(although if you want to con�gure them yourself, use X-CTU). However, we may want to check that
your computer has the appropriate drivers for the Xbees (If you have already gotten Xbees working
somehow on your computer, feel free to skip this paragraph). First, download, unzip, and install
the driver available here for Windows (http://ftp1.digi.com/support/driver/cdm20600.zip). I'm not
sure about Linux computers and Macs, but if the Xbees don't show up correctly in your device man-
ager, then you can install some drivers here (http://www.digi.com/support/productdetail?pid=3352).
Once this is done, go ahead and connect one of your Xbees to your computer via the micro USB
cable and the Xbee Explorer. On Windows, you can check that it's recognized by going to Device
Manager and checking to see that there is some reference to the Xbee under the Ports group.

Before you connect anything up, you should load your code onto your Arduino. When you do
this, do NOT have the Xbee shield/Xbee attached to it. If you have written code for your Arduino
where the setup is just for the case when your Arduino is directly connected to your PC, you can
use this same code. In other words, the Xbees don't have to be referenced in the software at all;
they're just plug and play!

Once you have loaded your code onto the Arduino, you can now wire up the setup, so go ahead
and connect everything together. Now you're ready to send data from your PC!

18

http://www.instructables.com/id/Kinect-controls-Arduino-wired-Servos-using-Visual-/
http://channel9.msdn.com/Series/KinectQuickstart
http://www.diaryofaninja.com/blog/2011/10/19/remaking-the-xbox-kinect-hub--an-introduction-to-new-user-interfaces
http://www.diaryofaninja.com/blog/2011/10/19/remaking-the-xbox-kinect-hub--an-introduction-to-new-user-interfaces
http://www.microsoft.com/en-us/kinectforwindows/
http://www.digi.com/support/productdetail?pid=3352
http://channel9.msdn.com/Series/KinectQuickstart/Camera-Fundamentals
http://channel9.msdn.com/Series/KinectQuickstart/Skeletal-Tracking-Fundamentals
http://sandcastle.codeplex.com/
http://www.skpang.co.uk/catalog/images/wireless/08687-03-L.jpg
http://www.skpang.co.uk/catalog/images/wireless/08687-03-L.jpg
http://freeduino.ru/arduino/images/XBee_Shield_Arduino_1_big.jpg
http://ftp1.digi.com/support/driver/cdm20600.zip
http://www.digi.com/support/productdetail?pid=3352


Like the code for your Arduino, the software on your PC that communicates via the Xbees to the
Arduino should be the same as the case where the Arduino is directly connected to your PC, where
you just send data to the serial/COM port. Again the Xbees are invisible to the software! If you
don't want to write up any code, download X-CTU for windows, in which you can send data bytes
to your Xbee/Arduino. For Linux and Mac, you can just use your terminal, like they do in this
tutorial (http://ashleyhughesarduino.wordpress.com/2010/07/29/xbee-and-macs-the-easy-way/)

10.1.2 Arduino and BOE-bots - written by Randy Miller

Wiring up the Arduino to the BOE-BOT isn't too bad. The BOE BOT consists of a few components:
the servos, the sensors, and the green board (that includes the Basic Stamp) that processes input
and output. All you care about in the BOE BOT are the servos and potentially the sensors
(depending on if you need them or not).

First, we want to remove the green board from the BOE BOT. To do this, you'll notice screws
at each of the corners of the board. Unscrew them so that you can remove the board. Also, you'll
notice 5 sets of wires that connect to the servos and the sensors. Each set consists of a black, red,
and white wire. Unplug these wires from the green board. We'll talk more about these sets later.
Now you're ready to use the Arduino.

Let's assume you don't want to use the sensors, so we can ignore the 3 sets of wires that are
connected to the sensors for now. On a high level, the goal is to send a signal from the Arduino
to the servos that will make them move (or not move). Luckily, the Arduino can also power the
servos, so you won't need an external power source.

To hook up the servos to the Arduino, let's �rst consider the 2 sets of wires to the servos. They
consist, like we said before, of a red, black, and white wire. The red powers the servos, the black is
ground, and the white receives the signal on how to move the servos; we want to connect these sets
of wires to the Arduino somehow. So, you should plug these 2 sets of wires into the breadboard,
connect the two red wires to the Arduino's power (look at the 5.5V pin), connect the two black
wires with the Arduino's ground, and connect the two white wires to two of the output pins on the
Arduino (9 and 11 work).

How you do this on the bread board is of course up to you. You may want to add resistors
and other wires to your circuit later on, but this is the basic idea for wiring up the servos to the
Arduino for power and for output.

For the Arduino code, look into using Servo.h. There's a bunch of documentation online about
how to use this, with tons of examples. Once you get some quick Arduino code up, you'll have a
BOE BOT powered by Arduino!

If you need to use the sensors, they have the same set of wires as the servos, and the wires in
this case mean the same thing. They'll need power as well (consider using an external power source
like a 9V battery), and you can wire up their signal wire (the white one) to the input pins on the
Arduino (the analog pins, below the power/ground pins). I have no idea what code is needed for
that though.

10.2 Source Code

To view the source code, please see the attached zip �le �SrcCode.zip�. Inside are two folders: one
for the Arduino application and one for the Kinect application. The Arduino application folder
holds two Arduino programs, one for the Kinect demo application, and one for the current Kinect
application.The �Kinect Application� folder holds the Visual Studio solution (aka, project) called

19

http://ashleyhughesarduino.wordpress.com/2010/07/29/xbee-and-macs-the-easy-way/


�ArduinoController� for the current Kinect application. The source code for this application can
be found in the relative path �ArduinoController/ArduinoController�, and each source code �le has
the extension �.cs�. The project can be opened by double clicking on the solution �le (extension
�.sln�) in the relative path �ArduinoController�.

To build the source code, you may need to add a whole bunch of references. Be sure to check
the path �Kinect Application/ArduinoController/ArduinoController/bin/Debug/� for any of the
dlls that you may need.

However, we submitted an executable that should work as long as the Kinect SDK is installed
and the executable is executed in the directory that it came in. The executable can be found in the
path �Kinect Application/ArduinoController/ArduinoController/bin/Debug/�.

10.3 Kinect Application Documentation

To view source code documentation, please see the attached zip �le �SrcCodeDocumentation.zip�.
Inside is a folder called �Doc� that holds all of the high level source code documentation in tra-
ditional MSDN/Javadoc web format. To start browsing the documentation, navigate to the Doc
folder and open �Index.html�. From there, feel free to browse by exploring di�erent classes as well
as the �members� of each class, which are essentially the methods and the �elds/instance variables
of each class.

The documentation attached covers all methods and all �elds in the application, including
private members.

10.4 Pictures of Hardware

20



Figure 9: Kinect, Test Arduino MAAC application , and Transmitter System

21



Figure 10: Final Arduino MAAC application

22


	Introduction
	Specifications/Objectives
	Project Description
	Project Design
	High Level Design
	Code Design

	Parts List
	Hardware
	Software

	Project Implementation 
	Demo Stage
	Menu and Steering Stage
	Precision Stage
	Refactoring Part I Stage
	Pod Racing Stage
	Voice Commands Stage
	Animations and Video Stage
	Refactoring Part II Stage
	X-Bee Stage
	Polishing and Documentation Stage

	Outlook and Possible Improvements
	Hardware Modifications
	Software Modifications

	Acknowledgments
	Disclaimer
	Appendix
	Piazza Posts
	Xbee and Arduino - written by Randy Miller
	Arduino and BOE-bots - written by Randy Miller

	Source Code
	Kinect Application Documentation
	Pictures of Hardware


